报告题目:On an axisymmetric model for the 3D incompressible Euler and Navier-Stokes equations
报告人:王术
时间:2012年10月19日(星期五)10:00-11:00
地点:理科楼数学系A-304
摘要:We study the singularity formation and global regularity of an axisymmetric model for the 3D incompressible Euler and Navier-Stokes equations. This 3D model is derived from the axisymmetric Navier-Stokes equations with swirl using a set of new variables. The model preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected. If we add the convection term back to our model, we would recover the full Navier-Stokes equations. We prove rigorously that the 3D model develops finite time singularities for a large class of initial data with finite energy and appropriate boundary conditions. Moreover, we also prove that the 3D inviscid model has globally smooth solutions for a class of large smooth initial data with some appropriate boundary condition.
报告人简介:王术教授,北京工业大学数学一级学科博士点负责人,北京市重点建设学科“北京工业大学应用数学学科”学术负责人,2001年被评为中国科学院优秀博士后,2004年入选教育部新世纪优秀人才支持计划,2008年入选北京市属高校人才强教深化计划学术创新人才(拔尖人才),2011年入选北京工业大学“京华人才”。现为中国数学会理事,国家留学基金评审专家,北京工业大学应用数理学院副院长。
联系人:郑春雄