English 清华大学 旧版入口 人才招聘

学术报告

Yau's Conjecture on the First Eigenvalue of the Laplacian on Minimal Surfaces in a sphere

报告题目:Yau's Conjecture on the First Eigenvalue of the Laplacian on Minimal Surfaces in a sphere

报告人:Prof. Jaigyoung Choe (Korea Institute for AdvancedStudy,South Korea)

时间:2013年3月28日(星期四)16:00-17:00

地点:理科楼数学科学系A304会议室

摘要:A minimal surface is locally the surface with minimum area. Therefore the Euclidean coordinates are harmonic on a minimal surface in Euclidean space. And the Euclidean coordinates are the eigenfunctions of eigenvalue 2 on a minimal surface in a sphere. Then Yau conjectured that the first eigenvalue of the Laplacian on a compact em-bedded minimal surface in a sphere should be just 2. In this talk I will give an easy proof of Yau's conjecture for the minimal surfaces constructed by Lawson and by Karcher-Pinkall-Sterling. (joint with M. Soret)

报告人简介:Jaigyoung Choe教授,微分几何学家,韩国高等研究院终身教授,师从数学大师R. Schoen获得博士学位,在微分几何中极小曲面,常平均曲率曲面,等周不等式等领域作出一系列有国际影响的重要研究工作。

联系人:李海中