数学系综合学术报告1-2
(非线性分析和微分方程研究团队学术报告)
报告人(speaker):Prof. Cyril Tintarev (瑞典Uppsala University数学系,教授)
时间(time):2014年10月30日(星期四)15:00-17:00pm
地点(Venue):理科楼数学系A304
报告题目1 (Title 1):Cocompact imbeddings and profile decompositions.
摘要(Abstract):we present a functional-analytic formailization of concentration compactness in Banach spaces with applications to specific functional spaces. A continuous imbedding cannot be compact if both norms are invariant with respect to the same non-compact (in strong topology) group of linear isometries. Such non-compact imbedding may be cocompact with respect to this group, which allows identify concentrations as elements of the space subjected to a non-compact sequence of group actions. Subtraction of such concentrating sequence may result in a remainder convergent in the target space. Besides the classical example of translations and dilations for spaces of Sobolev type, profile decompositions are known for other transformations in connection to Moser-Trudinger as well as Strichartz imbeddings.
报告题目2 (Title 2):Is Moser-Trudinger nonlinearity a true critical nonlinearity?
摘要(Abstract):Unlike the Sobolev critical nonlinearity in higher dimensions, Moser-Trudinger functional is weakly continuous except on very specific concentrating sequences. This indicates that Moser-Trudinger inequality is not optimal, and indeed, it can be improved. We also discuss the scaling properties of the Moser-Trudinger nonlinearity and the analogs of Talenti solution.
报告人简介:Cyril Tintarev是瑞典Uppsala University数学系教授,
是该国在变分与拓扑方法和PDE方面的主要专家之一。
在集中紧性原理和非线性椭圆方程的研究方面取得重要成果。
著有专著《Concentration Compactness》(Imperial College Press,2007)。
联系人:邹文明