报告题目: Rational Approximation of Functions in Hardy Spaces
报告人:邓冠铁教授(北京师范大学数学系)
时间:2014年12月23日(星期二)16:00-17:00
地点:理科楼数学系A304
摘要: We present some results on rational Approximation, integral representation and Fourier spectrum characterization of functions in the Hardy Spaces. First we show that the set of rational functions in $ H^p(\mathbb{C}_{+1}) $ with the poles in $\{-i\}$ is dense in $ H^p(\mathbb{C}_{+1}) $ for $0 $H^{p}(\mathbb{C}_{-1}),$ where $H^p(\mathbb{C}_k)\ (k=\pm 1) $ are the Hardy spaces in the half plane $\mathbb{C}_k=\{z=x+iy: ky>0\}$. Finally, We give Laplace integral representation formulas for functions in the Hardy spaces $H^p,$ $0 we give another version of Fourier spectrum characterization for functions in the boundary Hardy spaces $H^p$ for $0
联系人:郑建华