English 清华大学 旧版入口 人才招聘

论坛讲座

【系综合学术报告】2024年第17期 ||Global large smooth solutions and relaxation limit of isentropic Euler equations

报告题目:Global large smooth solutions and relaxation limit of isentropic Euler equations

报告人:彭跃军 教授(法国克莱蒙奥佛涅大学)

时间:5月29日(周三)上午10:00-11:00

地点:理科楼A404

报告摘要: In this talk, I consider the Cauchy problem for isentropic Euler equations with relaxation close to the isothermal case. I first show that the problem admits a unique smooth solution when either the relaxation time or the initial datum is sufficiently small. Then, in an appropriate time scaling, I establish error estimates of the convergence of the large density of the Euler equations toward the solution of the porous medium equation as the relaxation time tends to zero. Besides energy estimates, a key step to prove these results is a uniform estimate of a quantity related to Darcy's law.

个人简介:彭跃军现为法国克莱蒙奥佛涅大学教授,本科和硕士均毕业于复旦大学数学系,于1992年1月获得法国里昂第一大学博士学位,曾任同济大学助教、法国奥尔良大学和波尔多第一大学讲师、法国克莱蒙菲朗第二大学教授。彭跃军教授长期从事非线性偏微分方程及其应用方面的研究工作,尤其对拟线性双曲型方程组、空气动力学和激波、等离子体和半导体数学模型进行了深入研究,并取得了显著的科研成果及国际学术声誉,已在Ann. Inst. H. Poincaré Anal. Non Linéaire, Communication PDE, Inverse Problems, J. Math. Pures Appl.,SIAM Math. Anal. 等国际权威期刊发表90多篇学术论文。

邀请人:雍稳安