报告题目: On the symplectic convexity of toric domains
报告人:唐修棣 (北京理工大学)
时间:4月19日周五上午 9:00-11:00 地点:理科楼404
摘要:A domain is symplectically convex if it is symplectomorphic to a convex subset of the euclidean space. This is a key concept in the Viterbo conjecture on symplectic capacities. Many efforts have been made to determine the symplectic convexity of certain subsets, especially toric domains. In two dimensions the question is trivial since every domain can be made convex by the normalized curve-shortening flow, which is a hamiltonian flow, and is hence symplectically convex. We hope mean curvature flow can help in higher dimensions.
个人简介:唐修棣,北京理工大学助理教授,2014年毕业于清华大学数学科学系,2018年于加州大学圣地亚哥分校获博士学位,2018-2019年在美国康奈尔大学做访问助理教授,2019-2021年在加拿大多伦多大学数学系做博士后。主要从事辛几何与可积系统方面的研究工作,相关论文发表在IMRN、JSG和JGA等期刊上。
邀请人:马辉