English 清华大学 旧版入口 人才招聘

邱宇

  • 教授
  • 电话:62791872
  • 邮箱:q-y@tsinghua.edu.cn

基本信息

清华大学数学中心/数学系 教授

英国巴斯大学 博士

工作履历

2020-至今  清华大学数学中心/系 教授

2018-2020 清华大学数学中心/系 副教授

2016-2018 香港中文大学 研究助理教授

2013-2016 挪威科技大学 博士后

2012-2012 加拿大主教大学 博士后


教育经历

2008-2011 英国巴斯大学 博士 (导师:A.D.King)

2004-2008 北京大学 数学科学学院 本科


研究领域

代数表示论与几何拓扑。例如三角范畴(Calabi-Yau范畴、Fukaya范畴)上的稳定条件,辫子群/映射类群,模空间,丛(cluster)理论。。。等等。动机来自于(同调)镜像理论等。

所授课程

2018-2019 二聚体与表示论

2018-2019 代数拓扑

2019-2020 表示论与几何拓扑

2019-2020 围观数学

奖励与荣誉

2016年国际代数表示论会议奖

Citation: The ICRA Award 2016 is given to Yu Qiu who made important contributions in the representation theory of algebras on the topological structure of Bridgeland stability conditions, and a sequence of studies about Calabi-Yau and cluster categories.

基金

2014-2017挪威自然科学基金(参与,共4人)

2016-2018香港中文大学基金(独立主持) 

2017-2020香港自然科学研究基金(独立主持) 

2018-2021北京自然科学重点基金(项目主持,成员共7人) 

学术成果

Preprints

25. Contractible flow of stability conditions via global dimension function.

arXiv:2008.00282

24. Graded decorated marked surfaces: Calabi-Yau-X categories of gentle algebras, with Akishi Ikeda and Yu Zhou,

arXiv:2006.00009

23. Contractibility of space of stability conditions on the projective plane via global dimension function, with Yu-Wei Fan, Chunyi Li, and Wanmin Liu,

arXiv:2001.11984

22. q-Stability conditions via q-quadratic differentials, with Akishi Ikeda,

arXiv:1812.00010

21. q-Stability conditions on Calabi-Yau-X categories and twisted periods, with Akishi IKeda,

arXiv:1807.00469

20. Global dimension function, Gepner equations and $q$-stability conditions,

arXiv:1807.00010

19. Frobenius morphisms and stability conditions, with W. Chang,

arXiv:1210.0243

Papers

1. On the focus order of planar polynomial differential equations, with J. Yang,

J. Diff. Equations, 246 (2009), 3361-3379.

2. Ext-quivers of hearts of A-type and the orientation of associahedron,

J. Algebra, 393 (2013), 60-70. (arXiv:1202.6325)

3. Exchange graphs and Ext quivers, with A. King,

Adv. Math. 285 (2015), 1106–1154. (arXiv:1109.2924)

4. Stability conditions and quantum dilogarithm identities for Dynkin quivers,

Adv. Math. 269 (2015), 220-264. (arXiv:1111.1010)

5. Tagged maing class group: Auslander-Reiten translations, with T. Brustle,

Math. Zeit. 279 (2015), 1103-1120. (arXiv:1212.0007)

6. C-sortable words as green mutation sequences,

Proc. Lond. Math. Soc. 111 (2015), 1052-1070. (arXiv:1205.0034)

7. Decorated marked surfaces: Spherical twists versus braid twists,

Math. Ann. 365 (2016), 595-633.(arXiv:1407.0806).

8. Cluster categories for marked surfaces: punctured case, with Y. Zhou,

Compos. Math. 153 (2017), 1779-1819. (arXiv:1311.0010)

9. Decorated marked surfaces (Part B): Topological realizations,

Math. Zeit. 288 (2018) 39–53.

10. Contractible stability spaces and faithful braid group actions, with J. Woolf,

Geom. & Topol. 22 (2018) 3701–3760. (arXiv:1407.5986)

11. DMS~II: Intersection numbers and dimensions of Homs, with Y. Zhou,

Trans. Amer. Math. Soc. 372(2019) 635–660. (arXiv:1411.4003)

12. The braid group for a quiver with superpotential,

Sci. China. Math. 62 (2019) 1241–1256. (arXiv:1712.09585)

13. DMS~III: The derived category of a decorated marked surface, with A. Buan and Y. Zhou,

Int. Math. Res. Notices online first. (arXiv:1804.00094)

14. Cluster exchange groupoids and framed quadratic differentials, with Alastair King,

Invent. Math. 220 (2020) 479–523. (arXiv:1805.00030)

15. Finite presentations for spherical/braid twist groups, with Yu Zhou,

J. Topology . 13 (2020) 501-538. (arXiv:1703.10053)

16. Stability conditions and A2 quivers, with Tom Bridgeland and Tom Sutherland,

Adv. Math. 365 (2020), 107049. (arXiv:1406.2566)

Proceedings

17. Topological structure of spaces of stability conditions and top. Fukaya type categories,

Proceeding of First Annual Meeting of ICCM. (arXiv:1806.00010)

18. Decorated Marked Surfaces: Calabi-Yau categories and related topics,

Proceeding of the 51st Symposium on Ring Theory and Rep. Theory, 129–134, Symp. Ring Theory Represent. Theory Organ. Comm., Shizuoka, 2019. (arXiv:1812.00008)


人才培养

人才培养

博士生:2人+预定2人