【系综合学术报告】
报告题目:Curvature Measures on Alexandrov spaces
报告人:李楠教授(纽约城市大学)
时间:12月12日(周五)上午10:30--11:30
地点:清华大学数学系理科楼A404
摘要:Naber proposed a conjecture which says that when a sequence of n-dimensional non-collapsed manifolds M_i Gromov-Hausdorff converges to X with uniform lower curvature bound, as a measure, the scalar curvature scal dvol_{g_i} converges to a locally finite measure \mu = R dH^n +\Phi dH^{n-1} + \theta dH^{n-2} on X. We will show that the integral of the scalar curvature on the smooth part of an Alexandrov space is locally finite and this affirms Naber's conjecture for the smooth part R dH^n. We will also discuss the relation between this result and some conjectures by Yau and Gromov.
报告人简介:李楠,2010年Rutgers 大学博士毕业, 现任教于纽约城市大学。其研究方向为几何分析与度量几何,在Alexandorff space以及Ricci limit space等领域得到了重要的结果。
邀请人:徐国义,朱波