Email:zyzong@tsinghua.edu.cn

个人主页:

http://ymsc.tsinghua.edu.cn/cn/content/show/171-70.html

 

教育背景

2006-2010,清华大学,学士              

2010-2015,哥伦比亚大学,博士   

 

工作履历

2020年至今,清华大学丘成桐数学科学中心/数学系,副教授

2015-2019,清华大学丘成桐数学科学中心,助理教授   

 

研究领域

数学物理、代数几何 

奖励与荣誉

2017年 国家自然科学青年基金

学术成果

[1] Dustin Ross and Zhengyu Zong, The Gerby Gopakumar-Marino-Vafa Formula, Geometry & Topology, 17 (2013) 2935–2976.

[2] Zhengyu Zong, Generalized Marino-Vafa formula and Local Gromov-Witten Theory of Orbi-curves, Journal of Differential Geometry 100 (2015), no. 1, 161-190.

[3] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, Equivariant Gromov-Witten Theory of Affine Smooth Toric Deligne-Mumford Stacks, International Mathematics Research Notices, 2016, no. 7, 2127-2144.

[4] Dustin Ross and Zhengyu Zong, Cyclic Hodge Integrals and Loop Schur Functions, Advances in Mathematics 285 (2015), 1448-1486.

[5] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, All genus mirror symmetry for toric Calabi-Yau 3-orbifolds, Proceedings of Symposia in Pure Mathematics 93 (2016), 1-19.

[6] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, The SYZ mirror symmetry and the BKMP remodeling conjecture, Advances in Theoretical and Mathematical Physics, 20, no. 1 (2016), 165-192.

[7] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, The Eynard-Orantin Recursion and Equivariant Mirror Symmetry for the Projective Line, Geometry & Topology 21,no.4 (2017), 2049-2092.

[8] Zhengyu Zong, A Formula of the One-leg Orbifold Gromov-Witten Vertex and Gromov-Witten Invariants of the Local BZ_m Gerbe, arXiv:1204.1753.

[9] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, All Genus Open-Closed Mirror Symmetry for Affine Toric Calabi-Yau 3-Orbifolds, arXiv:1310.4818.

[10] Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270.

[11] Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, On the Remodeling Conjecture For Toric Calabi-Yau 3-orbifolds, arXiv:1604.07123.

[12] Bohan Fang and Zhengyu Zong, Topological recursion for the conifold transition of a torus knot, arXiv:1607.01208.

[13] Zijun Zhou and Zhengyu Zong, Gromov--Witten theory of [C2/Zn+1]×P1, arXiv:1612.00652.

[14] Bohan Fang and Zhengyu Zong, Graph sums in the remodeling conjecture, to appear in Proceedings of Symposia in Pure Mathematics.