Email:hanxiaoli@tsinghua.edu.cn

 

教育背景

博士(中科院数学与系统科学院, 2006)、 副教授(博导)

工作履历

2008-现在,清华大学数学科学系

2006-2008,意大利国际理论物理中心

2003-2004,德国莱比锡马普所

 

研究领域

几何分析。 主要研究高余维的平均曲率流以及Kahler曲面中的特殊曲面的存在性。

 

学术成果

[1] X. Han, J. Li, The mean curvature flow approach to the symplectic isotopy problem, Int. Math. Res. Not., No 26, 2005, 1611-1620.

[2] X. Han, J. Li, Translating solitons to symplectic and Lagrangian mean curvature flows, Internat. J. Math, 20 (4) (2009), 443-458.

[3] X. Han, J. Li, Symplecitc critical surfaces in K\"ahler surfaces , J. Eur. Math. Soc. (JEMS) ,  12 (2) (2010), 505-527.

[4] X. Han, J. Sun, Translating solitons to symplectic mean curvature flows, Ann. Global Anal. Geom., 38 (2010), 161-169.

[5] X. Han, J. Sun, An $\varepsilon$-regularity theorem for the meancurvature flow, J. Geom. Phys, 62(2012),2329-2336.

[6] X. Han, J. Li, L. Q. Yang,  Symplectic mean curvature flow in $CP^2$,  Calc. Var. and PDE's,  48 (2013), 111-129.

[7] B. Andrews, X. Han, H, Li, Y. Wei, Non collapsing for hypersurface flows in the sphere and the hyperbolic space,  Ann. Sc. Norm. Super. Pisa Cl. Sci., (5)2015, 331-338.

[8] X. Han, J.Jost, L.Liu, L. Zhao, Bubbling anaylysis for approximate Lorentzian harmonic maps from Riemann surfaces, Calc. Var. and PDE, 56(2017)

[9] X. Han, J.Li, J. Sun, The deformation of symplectic critical surfaces in a K\”ahler surface II-compactness, Calc. Var. and PDE, 56(2017)

[10] X. Han, J.Li, J. Sun, The deformation of symplectic critical surfaces in a K\”ahler surface-I, Int. Math. Res. Not, 20(2018),6290-6328.

 

人才培养

指导博士生1名(在读)